
 Elsevier Editorial System(tm) for Computer Communications
 Manuscript Draft

Manuscript Number:

Title: Secure Naming and Addressing Operations for Store, Carry and Forward Networks

Article Type: Special issue Opp-Net

Keywords: Internetworking: Mobile ad hoc networks; Information Security; Store, Carry, and Forward

Corresponding Author: Mr. William D. Ivancic, MSE

Corresponding Author's Institution: NASA Glenn RTesearch Center

First Author: William D Ivancic, BEE, MEE

Order of Authors: William D Ivancic, BEE, MEE; William D. Ivancic, MSE; William D Ivancic, MEE;
Wesley M Eddy, Master of Science in Computer Science; Joseph Ishac, Masters Degree in Computer
Engineering; Dennis C Iannicca, Master of Science in Computer and Information Scie; Alan G Hylton,
Masters of Science in Mathematics

Abstract: This paper describes concepts for secure naming and addressing directed at Store, Carry and
Forward (SCF) distributed applications, where disconnection and intermittent connectivity between
forwarding systems is the norm. The paper provides a brief overview of store, carry and forward
distributed applications followed by an in depth discussion of how to securely: create a namespace;
allocate names within the namespace; query for names known within a local processing system or
connected subnetwork; validate ownership of a given name; authenticate data from a given name; and,
encrypt data to a given name. Critical issues such as revocation of names, mobility and the ability to use
various namespaces to secure operations or for Quality-of-Service are also presented. Although the
concepts presented for naming and addressing have been developed for SCF, they are directly
applicable to fully connected systems.

Suggested Reviewers: Lou Chitkushev PhD, Boston University MS, Medical College of Virg
Associate Professor and Chair, Computer Science, Boston University
ltc@bu.edu
Will versed in RINA but has not seen this paper.

Shawn Ostermann
Associate Professor, School of Electrical Engineering and Computer Science, Ohio University
ostermann@cs.ohiou.edu
Well versed in DTN

Hans Kruse Ph.D.Theoretical Nuclear Physics, M.S., Physics
Professor, School of Information and Telecommunication Systems, Ohio University
kruse@ohio.edu
Well versed in DTN

William D. Ivancic
NASA Glenn research Center
21000 Brook Park Rd., Mail stop 54–1
Cleveland, OH 44135
January 31, 2013

Elsevier Editor
http://ees.elsevier.com/

To Elsevier Editor or Staff:

This paper describes concepts for secure naming and addressing directed at Store,
Carry and Forward (SCF) distributed applications, where disconnection and intermittent
connectivity between forwarding systems is the norm. The paper provides a brief
overview of store, carry and forward distributed applications followed by an in depth
discussion of how to securely: create a namespace; allocate names within the
namespace; query for names known within a local processing system or connected
subnetwork; validate ownership of a given name; authenticate data from a given name;
and, encrypt data to a given name. Critical issues such as revocation of names, mobility
and the ability to use various namespaces to secure operations or for Quality-of-Service
are also presented. Although the concepts presented for naming and addressing have
been developed for SCF, they are directly applicable to fully connected systems.

We believe this paper fits well into the special edition on opportunistic networking. This
paper is an architectural design position paper. As such, we currently have no research
data. Such data will be available once we implement the design.

All correspondence should be addressed to:]
Mr. William D. Ivancic
NASA Glenn research Center
21000 Brook Park Rd., Mail stop 54–1
Cleveland, OH 44135
william.d.ivancic@NASA.gov

There are no special considerations that should be given to this paper.

This paper has not been submitted for publication to any other sources.

A list of potential reviewers has been provided in the database entry. Included are the
names e-mail addresses and expertise. There are no reviewers that we wish to exclude.
We suggest that the reviewer's have a background in networking architecture more so
than cryptography. We have found the reviewers that have expertise in cryptography but
not architecture have missed the big picture of what we are trying to address.

Sincerely,

William D. Ivancic

Cover Letter

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Secure Naming and Addressing Operations for Store, Carry and Forward
Networks

Wesley M. Eddya, Willian .D. Ivancicb,∗, Dennis C. Ianniccab, Joseph A. Ishacb, Alan G. Hyltonb

aMTI Systems, 3000 Aerospace Parkway Brookpark, Ohio 44142 USA
bNASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135 USA

Abstract

This paper describes concepts for secure naming and addressing directed at Store, Carry and Forward (SCF) dis-
tributed applications, where disconnection and intermittent connectivity between forwarding systems is the norm.
The paper provides a brief overview of store, carry and forward distributed applications followed by an in depth dis-
cussion of how to securely: create a namespace; allocate names within the namespace; query for names known within
a local processing system or connected subnetwork; validate ownership of a given name; authenticate data from a
given name; and, encrypt data to a given name. Critical issues such as revocation of names, mobility and the ability
to use various namespaces to secure operations or for Quality-of-Service are also presented. Although the concepts
presented for naming and addressing have been developed for SCF, they are directly applicable to fully connected
systems.

Keywords: Internetworking, Mobile ad hoc networks, Information Security, Store, Carry, and Forward

1. Introduction

Internet technology has become pervasive and is now
present in many types of devices that are deployed in the
field for use in scenarios where they do not have good
(or any) actual Internet connectivity. The devices sup-
port data transfer during episodes of connectivity, and
the applications and protocol are configured to avoid
reliance on many typical infrastructure services (e.g.
DNS). These devices may be only intermittently con-
nected to other devices, and are used to support data
flows where the source and ultimate destination might
never be fully connected to one another at any time. Ap-
plications operate highly asynchronously, with incalcu-
lable constraints on their communication. Often, there
are intermediate relaying nodes (or ”agents”) that must
”carry” the data while waiting for connectivity to de-
velop. The systems and applications that are of con-
cern are primarily operating with a much higher level of

∗Corresponding author
Email addresses: wesley.m.eddy@nasa.gov (Wesley M.

Eddy), william.d.ivancic@nasa.gov (Willian .D. Ivancic),
dennic.c.iannicca@nasa.gov (Dennis C. Iannicca),
joseph.a.ishac@nasa.gov (Joseph A. Ishac),
alan.g.hylton@nasa.gov (Alan G. Hylton)

asynchrony between the data producers, individual re-
lays, and eventual data consumers. We call these ”Store,
Carry, and Forward” (SCF) systems to distinguish them
from typical Store-and-Forward (SF) systems, which
generally operate over a better-connected infrastructure
[1][2].

SCF distribute applications can be thought of as an
extreme case in mobile ad hoc networking (MANET)
because disconnection and intermittent connectivity is
the assumed condition whereas in mobile ad hoc net-
working hop-by-hop connectivity is generally assumed.
Fig. 1 illustrates a generic SCF network architecture,
with the SCF agents (labeled ”SCF”) frequently parti-
tioned into time-varying disconnected subsets. Depend-
ing on specifics of an individual scenario, it may be
likely that some SCF agents are permanently attached
to a connected network providing stable gateways to
the other SCF agents. However, in general, the system
should be considered to consist of a number of primar-
ily intermittently connected SCF agents at any point in
time.

There are numerous lessons to be learned from pre-
vious deployments of MANETs and store and forward
networks such as Delay Tolerant Networks (DTNs)
[3][4][5][6] . Since SF and DTN networks have no real
bounds relative to the maximum time an identified data

Preprint submitted to Computer Communications Journal Special Issue on Opportunistic Networking: February 1, 2013

*Manuscript
Click here to view linked References

http://ees.elsevier.com/comcom/viewRCResults.aspx?pdf=1&docID=11155&rev=0&fileID=339110&msid={124AC35C-E784-4335-9745-AC41038D41FB}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: MANET and Store, Carry and Forward Networks

or control unit can exist within a routed network, SF and
DTN are really distributed applications [7]. Regardless,
some of the more critical items are:

• SCF systems are generally connected via radio
networks. Some radio systems may take far less
power to listen than to transmit, though this varies
by individual link technology. Unnecessary trans-
mission wastes power on a wireless system and
can quickly drain a battery. The problem is com-
pounded for devices whose entire lifetime is deter-
mined by their battery (e.g. non-rechargeable sen-
sor nodes). Thus, reducing the number of trans-
missions is very important.

• It is highly desirable for the sender to know early
in a transmission whether or not the receiver will
accept the data, and likewise for the receiver to
be able to make this decision early within a trans-
fer. This permits a savings in power and opti-
mization of network capacity usage. For instance,
in DTN experiments with large bundles, an entire
large bundle may be sent, only to be discarded due
to receiver policy for security, resource scarcity, or
other issues.

• Disconnected and intermittently connected net-
works are difficult, if not impossible, to glob-

ally synchronize state across particularly achiev-
ing even rough global time synchronization is
a challenge. Timer based mechanisms can be
used without requiring global time synchroniza-
tion. Tight time synchronization is seldom neces-
sary and should be avoided in any distributed sys-
tem as it introduced a single point of failure.

• It is highly desirable for a receiving agent to de-
termine early within a transfer whether or not to
accept the data. Large data sets utilize significant
processing and storage resources for data that may
end up being discarded due to security, resource
constraints, or other policy issues.

• It is highly desirable to have some way to estab-
lish single-copy routes rather than flooding entire
networks with multiple copies of the same data.

• Communications and mobility is not completely
random even for ad hoc networks.

• As one moves father from the core (backbone) of
the network, nodes generally have less connectiv-
ity and capability.

1.1. Terminology

To aid in discussion within this document it is useful
to develop and define some terminology specific to our
concepts of SCF networks.

Container The application/user data to be transported
over the network as well as a checksum of that in-
formation (the payload).

Shipping Label Metadata describing the characteris-
tics of a container and its forwarding requirements
(the header).

2. Namespaces (Naming and Addressing)

The conclusion goes here We draw much of our con-
cepts for naming and addressing from three source:
“Patterns in Network Architectures”[8], “A note on
Inter-Network Naming, Addressing, and Routing” [9],
and “On the Naming and Binding of Network Destina-
tions” [10]. In particular, Saltzer [10] provides a sum-
mary of services, nodes, and attachment points that, if
strictly followed, enables: services (a.k.a. applications)
to be distributed and/or move, multi-homing of nodes,
and mobility.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1. A given service may run at one or more nodes, and
may need to move from one node to another with-
out losing its identity as a service.

2. A given node may be connected to one or more
network attachment points, and may need to move
from one attachment point to another without los-
ing its identity as a node.

3. A given pair of attachment points may be con-
nected by one or more paths, and those paths
may need to change with time without affecting the
identity of the attachment points. [sic]

Saltzer also points out that three sets of bindings must
be maintained and must be discovered in order to send
information between services:

• The binding between the service and the node it at
which it resides;

• The binding between the node and the network at-
tachment point (or points, if multi-homed); and,

• The path from source attachment point to destina-
tion attachment point (routing)1.

For our discussions, we are not concerned with the
bindings of attachment points (i.e. routing). Rather, we
consider two basic forms for names: locators and iden-
tifiers.

Locators (a.k.a. addresses) are hierarchical at least
that is highly desirable in order to aid in routing as
agents need some clue about where to send contain-
ers in order to get closer even if they do not know the
best direct path. For example, to send information from
1600 Pennsylvania Avenue NW Washington, DC to 10
Downing Street, London, England, United Kingdom
one knows that sending the information to somewhere
in the United Kingdom is getting that information closer
to the final destination. Likewise, in a tree-based hierar-
chical numbering system, if information is to be trans-
ferred from 1.2.3.4 to 1.2.100.87, sending the informa-
tion towards a grandparent node, 1.2, should be getting
the information closer to the destination or at least to a
node that likely has a better idea of where 1.2.100.87 is.

Identifiers are not necessarily hierarchical, and may
or may not be human readable. Identifiers should be
unique and are used to identify applications or ser-
vices. Identifiers are bound to locators and discovered
via some type of directory service. This binding may

1Whereas, here, Salzer defines routing as between attachment
points, we consider routing between source node and destination node
as a node may have multiple points of attachment i.e., multi-homing.

change over time. In SCF distributed applications where
disconnection is assumed to be normal, distribution and
synchronization of these directories required for discov-
ery must be well thought out. Directory services are
discussed further in section 11.

3. Philosophy of Multiple Namespaces

In the Internet, there is one namespace, IP addresses
for routing. The World Wide Web contains URLs for
high for higher-level identifiers. The Domain Name
Service (DNS) directory provides a directory service
for mapping computers, services, or any resource (e.g.
email, Unique Resource Locator for Web services,
etcetera) connected to the Internet. (Arguably, IPv6 can
support multiple namespaces e.g. Globally Unique Ad-
dressing (GUA) for normal routing and ORCHID [11]
for higher-layer identifiers, but this facility has not been
strongly used, nor will it be easy to, given the way that
existing software and hardware works, basically only
supporting their known subsets of existing type prefixes,
and not new prefixes). For SCF, we are proposing a
system of unlimited namespaces, which can be used to
construct either pools of application identifiers without
mandated structure, or pools of addresses with hierar-
chical structure. Thus, here, the only difference between
addresses and other identifiers is their hierarchical na-
ture.

The limitation of one namespaces, and the global vis-
ibility of that namespace to applications, is a root cause
of many complexities and fragilities within todays In-
ternet architecture, including within: the interdomain
routing system, the Domain Name Services (DNS), IP
neighbor discovery, and other aspects. This has led to a
multitude of security issues related to not being able to
verify ownership of particular identifiers or addresses,
and not being able to authenticate the bindings between
particular identifiers and addresses. These issues have,
to some extent, been attempted to patch over with BG-
PSEC/SIDR [12], DNSSEC [13], SeND [14], and other
extensions, but these have shifted the security issues to
issues of increased operational and infrastructure com-
plexity. Both of the namespaces still have centralized
(though hierarchical) allocation and management at the
top (e.g. IANN, ICANN, RIRs)2. There are no real
mechanisms available for creating new namespaces, as
even with IPv6, the 128-bit fields have been fixed and
follow formats with prefixes that IANA defines.

One of the most significant new facets of this SCF
proposal for namespace security is that rather than liv-
ing within existing namespaces, or subsets of them,
we are allowing the creation of an infinite number of

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

new namespaces, and to do so with minimum effort
and quickly. Communication is only possible between
nodes that have consented to join a given namespace,
so though a node may create its own namespace, this
will be worthless unless other nodes have policies that
allow them to become enrolled within the new names-
pace. Although similar in concept to Virtual Private
Networks (VPNs), the SCF namespaces are more pow-
erful for several reasons, including (1) wider scope com-
pared to VPN prefixes, (2) less brittle configuration and
potential for negative interaction with other portions of
a host OS networking stack, and (3) better integrated
with identifier-address resolution mechanisms, prevent-
ing issues of confused scope that occur in VPNs.

SCF’s multitude of namespaces also differs very sig-
nificantly from the Internet, as nodes that do not partic-
ipate in IP addressing are completely unreachable, and
nodes have a relatively poor and unclear granularity in
terms of whether they’re privately reachable [15] ver-
sus using globally routable addresses. Furthermore, the
lack of security in the IP namespace, allows visible and
invisible proxies, Network Address Translators (NATs),
and other middleboxes to subvert the roles and identities
of end-nodes in communication flows, without explicit
consent, and this brutality is really the only way to grow
the Internet and add new features because of the limita-
tion of the single IP namespace.

In summary, the traditional approach to networking
in todays Internet is to build one big layer-3 network
and then deploy firewalls and virtual private networks
(VPNs) throughout until one deems the network secure.
Unfortunately, the configuration becomes so baroque
that it will almost certainly break eventually. Our ap-
proach is to use credentials to build pair wise relations
with neighbors or end-to-end peers, and to verify hosts
and data prior to committing resources. No firewalls,
VPNs, etc. are required in order to implement the poli-
cies and security postures desired. Rather, the architec-
ture is actually just secure by design.

4. Creating a Secure Namespace

To mitigate potential threats to network, data, and ap-
plication security SCF needs ways for:

• Applications (end-applications and agents) to vali-
date received data

• End-applications to protect transmitted data

• Agents to validate end-applications that attempt to
utilize them

• Agents to validate one another when in contact

Application of namespaces will enable these capabil-
ities.

In a secure namespace, a root server exists some-
where in order to keep a database of registered names
within the managed namespace, and to issue certificates
when names are allocated from the namespace. Once al-
located, a name should never be de-allocated or reused,
since the lifetime of containers/labels with the name
may be unbounded (however, names may be revoked).
The root certificate for namespace X, called the Names-
pace Identifier (NSI) certificate, needs to be installed on
systems hosting applications that will use or (securely)
process containers/labels with names from namespace
X. The NSI contains a public key for the root, and op-
tionally a description of the valid name formats within
the namespace (e.g. via a regular expression), along
with optional metadata. The root certificates are the
only trusted components of the system.

Given that SCF supports a multitude of namespaces,
in order to be implementable and deployable, the for-
mat needs to be bounded. We propose to uniquely
indicate namespaces through the use of Universally
Unique Identifiers (UUIDs) created by the ”namespace
owner”. These UUIDs can follow the format defined
in RFC 4122 [16], which supports 128-bit UUIDs con-
structed from a timestamp, sequence number, and spa-
tially unique node identification.

Since we recognize that time synchronization in SCF
networks is difficult, and that even remembering the
current time across boot-ups may be difficult for some
nodes, we are initially using RFC 4122’s version 1 form
of UUIDs, where the timestamp is made robust to such
issues via scoping it within the other fields. In this form,
the sequence number can either be recorded between
boots, or generated randomly (or pseudo-randomly),
and where the node identification comes from either
IEEE media access (MAC) addresses or a self-generated
value3. One downside to this form of UUIDs is that
they are not human-readable or otherwise indicative of
the namespace’s purpose. Whether this is a downside in
practice or not needs to be determined through further
experimentation and deployment experience with SCF-
based networks. We suspect it may not be an issue, as a
database service mapping UUIDs to human-meaningful
strings could be created, as well as preconfiguring ap-
plications with the UUIDs of namespace they need to
operate within so that the UUIDs themselves are not
user-visible.

Once the UUID has been selected, the namespace
owner will associate it with a public/private keypair by

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 2: Creating a Namespace

creating a certificate called the Namespace Identifica-
tion certificate (NSI) [Fig. 2]. This certificate holds
fields for the UUID and public key, and is signed using
the private key. Of course, the details of the certificate
format and the cryptographic algorithms chosen are of
interest, and those are addressed in section 6, Certificate
Details.

The namespace owner is now responsible for manag-
ing a database recording any names that it has granted.
The basic schema for this database needs to include a
sequence number, the allocated name itself (an arbitrary
string of bits), a public key from the node that the name
was allocated to, and potentially timestamps associated
with the name creation and/or expiration.

At this point, the namespace has been created, and
the namespace owner can serve requests for allocating
names, as described in the next section.

It is imperative to understand that in order to be a
user of this namespace, the user must obtain a copy of
the NSI certificate. This could be done in a number
of ways. The key question is how is this bootstrapped,
how does the initial creation and distribution of the NSI
work in a practical deployment? One method that is
highly likely particularly for SCF networks consisting
of sensors is that an entity is populated with at least one
NSI during pre-deployment or even as part of the man-
ufacturing process. For other types of applications (that
build overlays for instance), the NSI could be installed
when the application is installed. Also, application soft-
ware could support importing NSIs retrieved from a web
server or in some other way, similar to the way the
Peer-to-Peer Session Initiation Protocol (P2PSIP) Dis-
tributed Hash Tables (DHTs) are configured [17]. With-
out an NSI, a system cannot validate any names within

Figure 3: Creating Proof-of-Names

that particular namespace associated with that particular
NSI.

5. Allocation of Names

We need a mechanism to secure and validate names
and applications. We propose to support this by using
simple certificates called Proof-of-Name (PoN) certifi-
cates, related to NSI certificates. How an application
receives its names is highly dependent on the opera-
tional environment. In some cases, this may be totally
pre-configured and statically setup, requiring no direct
real-time contact with the root of the namespace. In
other cases, applications may be able to dynamically re-
ceive PoN certificates during a time of connectivity to
the root. The following describes the procedures to ob-
tain and allocate validated names from the perspective
of the name requester.

The name requester wishes to obtain a name from the
namespace owner to be used as a secure identifier. In
order to do so, the requester needs to obtain a PoN cer-
tificate from the namespace owner. The requester ei-
ther asks for a particular name (identifier) explicitly or
allows for an owner-selected name. The requester sup-
plies its public key (described in 5.1). The namespace
owner either checks its database to see if the specific
name is available or generates an unambiguous name
per the request. The namespace owner enters the name
into the database and marks it as in-use, storing the pub-
lic key and returning a PoN certificate for the name,
signed by the namespace owner [Fig. 3]

Names may be hierarchically assigned by the owner,
supporting addressing as just another type of names-
pace that happens to have structure. A request can
also be issued to request a batch of names (a delegated-
subnetwork-namespace); this allows for secure prefix-
delegation in an addressing system from the namespace

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

owner. In this case, there is a slight modification to the
basic operations using a Hierarchical PoN certificate:

• The HPoN certificates name field needs to indicate
a range of names that have been allocated, rather
than a single name.

• The namespace owners database needs to handle
ranges of names.

• All HPoN certificate holders become namespace
owners and need to hold their own database of any
PoNs or HPoNs they grant within the delegated
subset of the namespace.

• When HPoN certificates are given out from the
subsets of the namespace (below the top-level),
they include a copy of the upper-level delegated-
subnetwork-namespace owners PoN as well. This
is needed in order to validate the HPoNs using (and
trusting) only the NSI certificate.

5.1. User Key Pairs for Requesting Names

The public key used for requesting a name could be
from an existing keypair, or one that is generated just
for the purpose of use with that name. It all depends on
the situation and operational environment. For instance,
if privacy/anonymity is a concern, a brand new keypair
could be generated to use with an ephemeral name, and
everything would be disposable. If access control to the
namespace is an issue, keys that are already in-use and
vetted somehow (e.g. through being present in a Per-
sonal Identify Verification PIV card Public Key Infras-
tructure PKI system) could be used.

In general the source of key material should not mat-
ter to the naming system. However, there will definitely
be some expectations on the sources of key material for
specific applications creating and using the namespaces.

6. Certificate Details

The certificates in our secure naming system are not
X.509 certificates [18]. Rather, they need to be much
simpler in order to only support the profile of fields that
is required for secure naming and reduce processing re-
quirements and code footprint, as well as certificate size.

NSI certificates include the following information

• Namespace UUID

• Public key of namespace-holder

• Signature from namespace owner

• Optional Fields:

– Cryptographic Algorithm(s) used

– Additional Serial (Sequence) Number

– Regular Expression for names within the
namespace

– Creation Timestamp (rather coarse to be use-
able in a SCF network)

– Expiration Timestamp (rather coarse to be
useable in a SCF network)

PoN certificates only need to include the following
information:

• Namespace UUID (matching the NSI)

• Name granted

• Public key of name-holder

• Signature from namespace owner

• Optional Fields

– Serial (Sequence) Number

– Creation Timestamp (optional and likely not
readily useable in a SCF network)

– Expiration Timestamp (optional and likely
not readily useable in a SCF network)

Numerous cryptographic algorithms are available for
generating the needed keypairs, digital signatures, etc.,
as well as specifications for certificate encoding and
other aspects. The NSI certificate can indicate which
cryptographic algorithms are to be used for operations
within the namespace. This provides the namespace
owner with the freedom to pick any sets of crypto-
graphic algorithms, and optionally include them within
the NSI. This information is only optional because in
some highly embedded systems it may be fixed to the
limited capabilities of the particular devices and stati-
cally pre-configured or otherwise known rather than a
matter of choice. Due to nature of SCF and design prin-
ciples of SCF, the need to Keep It Simple, in initial
experiments we are using only one public key crypto
suite (ECC per NSA Suite B with 256-bit prime mod-
ulus ECDH and ECDSA); one block cipher (AES-128
CTR); and, one hash algorithm (SHA-256), but other
deployments can pick different algorithms while sup-
porting the same concepts.

Names and namespaces could have an expiration
date, but supporting this goes back to the time synchro-
nization requirement that SCF needs to avoid. However,

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

for SCF distributed applications, time-synchronization
could be much rougher than todays connected systems.

The serial number and timestamp fields in the NSI are
optional they may be redundant with the fields within
the UUID, if the lengths there are sufficient.

The secure namespace concepts presented here are
agnostic to the concrete encoding of certificates as they
are stored and exchanged. However, in any practical use
of these concepts, concrete formats need to be defined.
For our experiments, involving small systems such as in
space exploration and sensor nodes, with no tolerance
for extraneous code, we believe that X.509 certificates
carry far too much baggage that isn’t strictly necessary.
We are instead experimenting with JavaScript Object
Notation (JSON) objects that hold the necessary fields,
and are rather easy to parse and generate with very small
amounts of code.

6.1. Certificates and Name Revocation

Once issued, an attacker that obtains the correspond-
ing private key could maliciously use an SCF PoN cer-
tificate. This is obviously a problem for distributed ap-
plications operating over intermittently connected and
disconnected networks, as is the time to notify is un-
bounded and in the extreme is infinite. However, that do
not mean one cannot attempt to mitigate the problem.

Two ways that this can be mitigated are through
flooding of certificate revocation lists (CRLs) when the
compromise of the public key is suspected, and through
using lifetimes on the certificates designed to expire be-
fore the private key is likely to be compromised. The
downsides to flooding CRLs is that it takes memory,
network capacity, and time which will all be at a pre-
mium in the use cases SCF is desired for. The downside
to expiration times is that using them requires at least
rough synchronization of distributed system clocks.

As stated previously, it is difficult to synchronize state
across SCF particularly time. Because of this, tra-
ditional PKI techniques for revoking certificates (and
names) cannot be used. However, to provide some ben-
efits, time-synchronization may only need to be to a
coarse granularity of, for instance, a day. Even that may
be non-trivial, in some systems (e.g. across reboots).
Regardless, we suggest that other methods are possible.

Without needing other nodes to understand an abso-
lute expiration time, the namespace owner can simply
revoke certificates when it unilaterally decides the ex-
piration time has been reached. Because the NSI and
PoN certificates have serial numbers, and because cer-
tificates within the same namespace should typically be
expiring in sequence, this can be exploited in a sort of

CRL compression method. For example, a rather small
revocation message could be flooded containing only
the serial number of the lowest unexpired PoN within a
namespace or NSI generated by the owner. This would
be signed with the owners private key. On reception,
nodes would be able to store only this sequence num-
ber and know that any certificates below it are no longer
valid. This implements a sort of rolling window of valid
certificates advanced by the owner.

In exceptional cases where the namespace owner
needs to revoke certificates prior to natural expiration
(e.g. in the case of compromise), a set of additional
revoked sequence numbers can be appended to the
flooded message. As such incidents will hopefully be
significantly more rare than natural expiration, and as
once natural expiration is reached, these special case
revocations become subsumed by the advancing mini-
mum valid sequence number, we believe this stands a
good chance of working quite well in practice.

Note that having the namespace owner announce re-
vocations in this way does not prevent further mech-
anisms from being incorporated into implementations
in order to support more timely responses to incidents
known within disconnected pockets of the network. For
instance, it may be useful in some environments to be
able to blacklist given names if theres confidence that
theyve been compromised through some other means
(like localized Host or Network Intrusion Detection
Systems), even prior to a CRL being obtained that cov-
ers them.

It is important to note the following two items regard-
ing SCF certificates:

• Since time-synchronization cannot be assumed,
the certificates do not strongly support non-
repudiation; and,

• A namespace owner destroys the namespace if it
revokes its own NSI certificate, only if notice of
that revocation reaches all nodes, and is remem-
bered by them (e.g. not forgotten about after a re-
boot).

In this secure naming system, it is currently much
easier to create namespaces and names than it is to ef-
fectively destroy them. This may be a fruitful area of
future work.

7. Discovering and Querying Names

Creating a namespace and allocating names within
it are necessary but not sufficient to enable communi-
cations. There needs to be a way for the names of

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

reachable nodes and applications to be discovered and
mapped into lower-layer protocol details in order to es-
tablish communications. This is provided through a
generic directory service. This does not assume or im-
ply that the addresses are exposed to the applications.
Rather, this is the binding between the service e.g., ap-
plication, and the node it at which it resides. That direc-
tory service can be implemented in a number of different
ways, all optional for a given use of secure namespaces,
and all requiring some further concrete details. These
discovery mechanisms are specific to the given lower-
layer protocols that secure namespaces are being built
on top of in an application.

The namespace owner already maintains a database
of the granted certificates, so it seems natural at first to
also use that database for directory services by enhanc-
ing it with lower-layer locators for the granted names.
This clearly has scalability issues, since we have not yet
defined a way to distribute the namespace owner role
within a namespace. It also would only be useful in
scenarios where nodes have frequent connectivity that
allows communications with the namespace owner in
order to query and update records as their lower-layer
locators change. Clearly it is not a complete workable
solution for SCF distributed applications.

Another approach is to define neighbor discovery
mechanisms similar to those used in IPv6, which will
make use of lower-layer multicast/broadcast capabili-
ties in order to learn about the nodes and applications
that are available within the local scope of the lower-
layer protocols. This is relatively easy to do by adapt-
ing the formats, timers, and algorithms that IPv6 neigh-
bor discovery uses, and simply replacing the address
fields with secure name fields. In contrast to IPv6 Se-
cure Neighbor Discovery (SeND), however, our secure
namespace concept allows much easier proof of owner-
ship to be demonstrated (see section 9). Establishment
of neighbor relationships allows communications to be
secured with the obtained credentials, optionally pro-
viding authentication and/or privacy services for future
exchanges.

A neighbor discovery based approach for learning
name bindings is likely to work better in most SCF
scenarios than a centralized database. However, the
neighbor discovery only works within the scope of a
single lower-layer hop. It does not support multi-hop
forwarding or discovering the bindings for names that
are owned by nodes that are multiple hops away within
the underlying network. For this, multiple approaches
can be made to work, including adaptation of exist-
ing routing algorithms and protocols such as Trickle
[19] or IPv6 Routing Protocol (RPL) [20]20, adaptation

of resource-locating protocols like Application-Layer
Traffic Optimization (ALTO) [21], or developing a gos-
siping query protocol. In fact, different SCF scenarios
that we have defined are certain to drive alternative ap-
proaches for this part of instantiating the secure nam-
ing concepts within a concrete system. This is an area
where the most future work is needed in the near term;
however, we believe it can be done largely using exist-
ing protocols as models or frameworks. In section 11,
Directory Services, we provide some notional deploy-
ment scenarios for Directories.

8. Validating Name Ownership

Given that the NSI for a namespace is generated by
the owner and distributed to any applications that will
be working within that namespace, all applications are
guaranteed to have the public key of the namespace
owner, and be able to check signatures generated using
the owner’s private key. Since the owner’s private key
is used to sign the PoN certificates, any PoN certificates
received from other applications can be easily validated,
without resorting to cumbersome certificate chain oper-
ations normally involved in PKI-based systems.

This only proves that the PoN certificate is legitimate
and that the name has been issued; it does not prove that
the application providing the PoN indeed holds the pri-
vate key associated with the public key, nor does it prove
that the name has not been revoked for some reason.

Proving ownership of the name within the PoN can
be done in two ways:

1. Via a challenge-response exchange, in which the
verifying party encrypts a puzzle with the public
key from the PoN, and awaits a response that could
only be generated through decrypting the puzzle,
thus demonstrating possession of the private key.

2. Via a signature using the corresponding private
key and covering the PoN plus some nonce like
a timestamp, sequence number, or other freshness
indicator that is bootstrapped out-of-band in a way
that prevents replay attacks.

The first method is relatively straightforward but re-
quires both parties to be ”online” or with direct low-
latency communication, otherwise much time and the
corresponding opportunities for communication may be
wasted.

The second method is more complex, and requires
some help or support from the lower-layer protocols in
order to provide the means to indicate freshness of a
signature; possibly requiring time synchronization. The

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4: Authenticating Names

significant advantage of this method is that it can poten-
tially be done one-way (without bidirectional exchange)
and thus may be more amicable to scenarios where there
is only unidirectional connectivity, high- delays, or lack
of concurrent end-to-end paths.

9. Authenticating and Encrypting

Authenticating and encrypting data to a given name
is a relatively straightforward process. To authenticate
data (the container), the sender signs the data using
the private key corresponding to the public key in the
senders PoN. The receiver then uses the PoN public key
to check the signature and (if necessary) validates the
PoN using the appropriate NSI certificate [Fig.4]. Sim-
ilarly, to encrypt data, the sender uses the public key in
the destinations PoN to encrypt data. The receiver then
uses the private key portion of the keypair identified in
its PoN in order to decrypt the data it receives.

For SCF networks, it is highly desirable for a receiv-
ing agent to determine early within a transfer whether or
not to accept the data in order to maximize resource uti-
lization (e.g. bandwidth, storage, computation, battery).
Thus, the ability to authenticate the data source is im-
perative. If the SCF protocol is designed in a matter to
allow the shipping label to be processed separately from
the container body, the label can be authenticated effi-
ciently within the network precisely in the same manner
as the complete containers data.

10. Applications and Namespaces

All applications need to have an Application Process
Name (APN) that identifies them. Some APNs can be
Distributed Application Names (DANs) in order to sup-
port multicast style delivery, but in the basic case, an

APN uniquely identifies a single process, and DANs are
an advanced topic, beyond the scope of this paper.

SCF agents are applications that parse labels and re-
lay containers for other applications. SCF agents have
APNs drawn from a namespace that identifies them as
relaying applications. It is assumed that the applications
(including SCF agents) share the same set of NSIs in or-
der to be able to communicate within a namespace.

How the application receives an APN, was covered
in section 5, Allocation of Names. For now, assume
the application knows about its APN, and has a certifi-
cate to prove that the APN was assigned from a root
for the namespace. The application should internally
posses the private key, which corresponds to the public
key within its PoN certificate. This allows the applica-
tion to prove ownership of the APN to any SCF agents
or other SCF applications within the same namespace.

10.1. Suggested API based on APNs
Applications use SCF via an API that can be sys-

tem/vendor dependent. SCF agents can be within the
same platform as applications or remote; the API is all
that matters. An example API is shown below:

• Poll for any SCF agents or SCF applications di-
rectly known to the local system. The SCF agents
in the network may be using a beacon process to
broadcast their presence, may be statically config-
ured on systems, or may be discovered through
some other type of dynamic process. It does not
matter to the application. When polling, the appli-
cations APN should be provided, since some SCF
agents may only have access controls that permit
specific APNs to utilize them, and are not generally
available to relay for all applications. This polling
should return a list of APNs that identify the SCF
agents. There might be two flavors of polling;
one that returns immediately with currently known
information, and one that blocks while some on-
demand results are collected by the local system;
not all systems need to support both.

• Register the applications APN with a particular
SCF agent. This should block and return suc-
cess/failure. Registration may allow the appli-
cation to reserve space on the agent for incom-
ing/outgoing containers.

• Send a container via a SCF agent the application is
registered with. The send call should include some
way of signing the request, so that the SCF agent
can authenticate it before committing resources for
the container.

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Receive a notification from a SCF agent the appli-
cation is registered with that a container has arrived
for the APN, giving relevant label material to the
application.

• Request a given containers contents from the SCF
agent.

• Withdraw/destroy a registration with a SCF agent.
This needs to be authenticated.

It is important to note that the secure namespace op-
erations allow all of these functions to be performed in a
robust manner that protects both the network infrastruc-
ture and resources (buffers, bandwidth, etc), as well as
the nodes and applications themselves. This is a signif-
icant difference from other store-and-forward systems
that have been built (e.g. based on DTN) with similar
APIs between relays and applications, but without the
strength of any security to the namespaces involved.

10.2. Addressing and Routing Application

The following demonstrates how naming is used by
applications to communicate with one another and with
SCF agents, without having addressing information vis-
ible.

Advertising reachability of APNs between SCF
agents can be done securely, if, when registering, the ap-
plication provides a copy of its APN ownership certifi-
cate embedded in another certificate that indicates del-
egation to the SCF agents APN and is signed using the
applications private key. Other SCF agents can then use
the public key from the embedded certificate to check
that signature, and can use the root certificate for the
applications namespace in order to check the inner cer-
tificate proving that the application itself really owns the
APN initially.

Full routes between SCF agents can be securely ad-
vertised by further nesting the certificates this way. This
mechanism can be used to prove contacts have existed
at one point in time or another, and that transitive sets of
contacts have taken place over time, but does not show
current or future proof of reachability. That is part of
the routing/addressing system.

11. Directory Services

In order to illustrate how name-to-address binding
(N2A) directory services could operate in SCF networks
we provide two examples. The first example is an army
deployment. This is used to show an SCF with high
degree of disconnection. The second example is the

use of namespaces for aeronautics. The purpose of the
aeronautics example is to show how distributed N2A di-
rectories are: updated, enable mobility, and enable use
of common infrastructure while simultaneously secur-
ing critical infrastructure.

11.1. Army Field Operations

Figure 5 illustrates a conceptual field deployment for
the army. Army communications is highly structured
particularly the closer one gets to the core network. In
addition, connectivity and bandwidth increase as one
moves from the soldier to the core. The field army hi-
erarchy shown is of the form, Division (DI), Brigade
(BR), Battalion (BA), Company (CO), Platoon (PL),
and Squad (SQ). Each upper echelon is composed of
multiple lower echelons. For example, there are 8 to 16
soldiers in a squad, 2 to 4 squads in a platoon and 3 to
5 platoons in a company. In our example, Companies
have full connectivity to Battalions; Battalions have full
connectivity to Brigades; and Brigades have full con-
nectivity to Divisions.

In figure 5, each rectangle from Division to Squad
represents a SCF routing agent. For convenience, the
identities of these SCF routing agents are provided by
hierarchical names. The upper rectangle is D1 for Di-
vision 1. The lower middle rectangle as squad eche-
lon level is SQ4.PL1.CO5.BA3.BR2.DI1, i.e. ¡Sqaud4¿
¡Platoon1¿ ¡Company5¿ ¡Battalion3¿ ¡Brigade2¿ ¡Di-
vision1¿. Such a naming system could be use as ad-
dressing, but care should be taken to not use application
identifiers as the point of attachment locator (address)
otherwise multi-homing and mobility problems will re-
sult (see the following aeronautics example for clarifi-
cation). In the army example, we use a hierarchical
numbering system for addressing with the alphanumeric
names for identities.

The Division is responsible for allocating addresses
(location names) in the namespace 1.0. When the
Brigade routing, BR2, attaches to Division router, DI1,
BR2 sends and empty request for names signifying that
it is requesting an address, or, in this case, a set of ad-
dresses. The Division allocates the locator name 1.2
and the delegated-subnetwork-namespace 1.2.* to the
Brigade router, BR2. BR2 is now responsible for that
DSN and passes a fraction of that down to the Brigade 3
router, BR3. BR3 in now responsible for DSN 1.2.3.*.
As echelon routers connect to the system, they request
and are allocated sub-address space. Note, prior to time,
T1, the Platoon and Squad routers have not been al-
located delegated-subnetwork-namespace (addresses).
At time, T1, the Platoon routers receive their address

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 5: Notional Field Army Naming and Addressing

allocations and at time, T2, the Squad routers have
delegated-subnetwork-namespace

Two soldiers are represented by their identities,
ID123 and ID199. They have no addresses until time,
T3, at which time they can communicate up and down
within the 1.0 namespace. At time, T4 they become dis-
connected. At time, T5, they connect to each other and
can communicate over a link local address on the wire-
less connection. They can only communicate via appli-
cations that have been allocated and validated. Valida-
tion occurs using the common NSIs for those particular
applications (see the following aeronautics example for
clarification). At time, T6, soldier ID123 can commu-
nicate with and across echelons within the 1.0 names-
pace using an entirely new location identifier. Note, re-
binding of location to identity occurs from bottom up.

Thus, those nearest to the mobile node will perceive the
updates more quickly than those topologically further
away. This is exactly what we want in a SCF network.
Also, during times of disconnection, when, for instance,
ID123 cannot find or connect to ID199, sending the con-
tainers up the tree is perfectly reasonable as one would
expect the location of ID199 to eventually propagate to
the upper echelons.

11.2. Aeronautical Mobile Networks

Figure 5 illustrates and aeronautical mobile network
and table 1 shows the B2A directory updates. This ex-
ample is used to show: how the B2A tables get updated;
how mobility is accommodated; and, how namespaces
can be used to enable shared infrastructure while secur-
ing critical infrastructure.

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

For this aeronautics network, we have a number of
domains; each can have their own set of namespaces for
applications. We also have a global routing namespace
for addressing (location). In aeronautic networks, Air
Traffic Control (ATC) is a critical communication sys-
tem for safety of flight and safety of life. Airline Oper-
ation Control (AOC) is used for passenger information,
fuel, weather, electronic flight bags and other applica-
tions often specific to the airlines. In future networks
it is envisioned that ATC and AOC may be permitted
to share the same radio links. However, ATC is always
given priority over AOC. The other system on an air-
craft is the Passenger Internet and Entertainment Ser-
vices (PIES). This is generally and open network. We
also have the open Internet services on the ground as
well as the various passengers corporate networks (pri-
vate networks).

In figure 6 we show eight different N2A directories.
Directory 2 is a local, on aircraft directory. The air-
craft ID is NX211. We assign the aircraft router the
same ID. In this example, assume there are 5 comput-
ing systems onboard, ATC, AOC, and three passengers
computers (e.g. smart phones, pads, laptops, etc.). ATC
has one application with a UUID of NX211(atc). AOC
has three applications: NX211(efb), NX211(fuel), and
NX211(weather). The local onboard router is providing
pong and chess as entertainment applications to the pas-
sengers. Chuck and Kim have registered to play pong.
Chuck and Larry have registered to play chess as well as
access to the Internet. Kim will be using her corporate
email system.

While on the ground at the gate, all systems are con-
nected via the AeroMAX link. AeroMAX is a shared,
high-speed wireless link used on the airport tarmac for
communication to multiple entities. Once in the air, en-
route, the aircraft ATC and AOC can use Link-2 back
to the FAA Control Center. Link-2 is a highly reliable,
low-rate link. This link is not available to passengers.
NX211 happens to have satellite service. This link is
available to passengers and (let us assume) it is also
available to ATC and AOC services. At some point in
the flight, there is a handover from link-2 (Cleveland
Control Center) to link-4 (Chicago Control Center).

Table 1 shows the N2A binding updates that occur
during various stages of flight. At time, T1, the on-
board systems update their binding with the local di-
rectory, D2. Also, all systems are permitted to use the
AeroMAX. Thus, all systems send binding information
to Directory 4. Directory 4 then updates the AOC and
ATC directories. At time, T2, Links 2 and 3 are active.
ATC and AOC are permitted to use both links with PIES
is only permitted to use Link-3. The corresponding di-

Figure 6: Aeronautical Network

rectly connected directories, D5 and D8 receive bind-
ing updates. Note that ATC and AOC are now multi-
homed (i.e. have two or more N2A binding entries).
In addition, at time, T2, ATC, AOC and PIES have all
moved topologically. Finally, at T3, Link 2 is inactive
and link 3 is active. Thus ATC and AOC binding up-
dates show mobility from the Cleveland Control Center
to the Chicago Control Center.

12. Quality-of-Service

In the Aeronautics Networking example, we show
that specific networks can be separated via namespaces.
In this manner we can restrict use of various links such
as links 2 and 3 to various namespaces (here ATC and
AOC. This is one aspect of quality-of-service (QOS).

An important aspect of QOS regarding SCF networks
is the ability to manage resources (e.g. storage, compu-
tation, bandwidth and power battery life). This is criti-
cal for SCF systems as resources are precious. Further-
more, and inability to properly manage resources opens
the system to denial-of-service (DOS) attacks. Names-
pace can be used in SCF firewalls to control resource
allocations such as:

• What namespaces are permitted to use any of the
system resources at all;

• What links may be used by particular namespaces;

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1: Name-to-Address Bindings
T1 - Link 1 (WIMax)
T2 - Link 2 (Cleveland Control Center), Link 3 (KuBand Satellite)
T3 - Link 4 (Atlanta Control Center, Link 3 (Ku-Band Satellite)

Directory Application Address Application Address Application Address
1 NX211(efb) _.A.B.2 NX211(efb) _.C.D.2 NX211(efb) _.J.K.2

AOC NX211(efb) _.X.Y.2 NX211(efb) _.X.Y.2
NX211(fuel) _.A.B.2 NX211(fuel) _.C.D.2 NX211(fuel) _.J.K.2

NX211(fuel) _.X.Y.2 NX211(fuel) _.X.Y.2
NX211(weather) _.A.B.2 NX211(weather) _.C.D.2 NX211(weather) _.J.K.2

NX211(weather) _.X.Y.2 NX211(weather) _.X.Y.2
2 chuck(pong) _.A.B.3 chuck(pong) _.X.Y.3 chuck(pong) _.X.Y.3

Local chuck(chess) _.A.B.3 chuck(chess) _.X.Y.3 chuck(chess) _.X.Y.3
larry(chess) _.A.B.4 larry(chess) _.X.Y.4 larry(chess) _.X.Y.4
kim(pong) _.A.B.5 kim(pong) _.X.Y.5 kim(pong) _.X.Y.5

3 NX211(atc) _.A.B.1 NX211(atc) _.C.D.1 NX211(atc) _.J.K.1
ATC NX211(atc) _.X.Y.1 NX211(atc) _.X.Y.1
4 NX211(atc) _.A.B.1

AeroMAX NX211(efb) _.A.B.2
NX211(fuel) _.A.B.2
NX211(weather) _.A.B.2
chuck(internet) _.A.B.3
larry(internet) _.A.B.4
kim(internet) _.A.B.5

5 NX211(atc) _.C.D.1
Cleveland NX211(efb) _.C.D.2
Control NX211(fuel) _.C.D.2
Center NX211(weather) _.C.D.2

6 NX211(atc) _.J.K.1
Atlanta NX211(efb) _.J.K.2
Control NX211(fuel) _.J.K.2
Center NX211(weather) _.J.K.2

7 kim(nasa.mail) _.A.B.5 kim(nasa.mail) _.X.Y.5 kim(nasa.mail) _.X.Y.5
NASA

8 chuck(internet) _.X.Y.3 chuck(internet) _.X.Y.3
Internet larry(internet) _.X.Y.4 larry(internet) _.X.Y.5
Public kim(internet) _.X.Y.5 kim(internet) _.X.Y.5

T1 T2 T3

• How much storage will be allocated to a particular
namespace; and

• The size of the container that may be accepted for
reception.

Note, since we can prove that containers were sent by
the name-holder, QoS using namespaces has authenti-
cation unlike what the IP world offers. It is also much
stronger than what Bundle Authentication Block (BAB)
offers for DTN [citerfc6257 since it gives proof all the
way back to the source, not just to the previous hop.
Thus, it is robust to having compromised agents in the
middle of the network generating bogus containers.

13. Conclusions

The secure naming system presented provides a light-
weight method for allocating and validating application
names and locators (addresses) that could be deployed
in a Store, Carry and Forward, normally disconnected
networks. The technique can also be applied to fully
connected networks. By ensuring that the application
names separate from the location names, the system
readily handles multi-homing and mobility.

Our system could be an enabling technology for
the aeronautics networks vastly simplifying operations
and management. For instance, every infrastructure

provider can maintain its own namespaces for manage-
ment of its equipment. Since these are not exposed to
the users, most security threats to the infrastructure in-
stantly disappear.

Infrastructure providers that wish to confederate for
the purposes of creating a routable address space be-
tween them can do so, and those routable addresses
still do not expose their management and control planes
to one another. Mobile users sharing NSI certificates
for that address space, can roam to any provider that’s
also part of it, without any pre-existing trust relation-
ships, and obtain addresses. If they need to be globally
reachable themselves, they can use their own names-
paces above, created for specific domains (ATC, AOC,
PIES) and allowing applications from all domains to uti-
lize the same infrastructure yet be completely isolated
from one another except for sharing bandwidth. Such
techniques also apply to securing ”Critical Infrastruc-
ture Networking”. There will be no fear of accidentally
leaking routes, because the namespaces have been fac-
tored out, access to names is secured, and proof of own-
ership is verified.

References

[1] W. Ivancic, W. Eddy, D. Iannicca, J. Ishac, Store, Carry and
Forward Problem Statement, Internet-Draft draft-ivancic-scf-
problem-statement-00, Internet Engineering Task Force, work
in progress (Jul. 2012).
URL http://www.ietf.org/internet-drafts/draft-ivancic-scf-problem-statement-00.txt

[2] W. Ivancic, W. WesleyEddy, D. Iannicca, J. Ishac, Store,
Carry and Forward Testing Requirements, Internet-Draft draft-
ivancic-scf-testing-requirements-00, Internet Engineering Task
Force, work in progress (Jul. 2012).
URL http://www.ietf.org/internet-drafts/draft-ivancic-scf-testing-requirements-00.txt

[3] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, H. Weiss, Delay-Tolerant Networking Architecture,
RFC 4838, Internet Engineering Task Force (Apr. 2007).
URL http://www.rfc-editor.org/rfc/rfc4838.txt

[4] K. Scott, S. Burleigh, Bundle Protocol Specification, RFC 5050,
Internet Engineering Task Force (Nov. 2007).
URL http://www.rfc-editor.org/rfc/rfc5050.txt

[5] L. Wood, W. Ivancic, W. Eddy, D. Stewart, J. Northam, C. Jack-
son, A. da Silva Curiel, Use of the delay-tolerant networking
bundle protocol from space, in: Proceedings of the 59th Astro-
nautical Congress, Glasgow. IAC, 2008.

[6] W. Ivancic, P. Paulsen, D. Stewart, W. Eddy, J. McKim, J. Tay-
lor, S. Lynch, J. Heberle, J. Northam, C. Jackson, et al.,
Large file transfers from space using multiple ground terminals
and delay-tolerant networking, in: Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE, IEEE, 2010, pp.
1–6.

[7] R. Watson, Timer-based mechanisms in reliable transport proto-
col connection management, Computer Networks (1976) 5 (1)
(1981) 47–56.

[8] J. Day, Patterns in network architecture: a return to fundamen-
tals, Prentice Hall, 2007.

[9] J. Shoch, A note on inter-network naming, addressing, and rout-
ing, Xerox Palo Alto Research Center, IEN 19.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[10] J. Saltzer, On the Naming and Binding of Network Destinations,
RFC 1498, Internet Engineering Task Force (Aug. 1993).
URL http://www.rfc-editor.org/rfc/rfc1498.txt

[11] P. Nikander, J. Laganier, F. Dupont, An IPv6 Prefix for Over-
lay Routable Cryptographic Hash Identifiers (ORCHID), RFC
4843, Internet Engineering Task Force (Apr. 2007).
URL http://www.rfc-editor.org/rfc/rfc4843.txt

[12] G. Huston, R. Bush, Securing bgp with bgpsec, in: The Internet
Protocol Forum, Vol. 14, 2011.

[13] [online, cited January 2013][link].
[14] J. Arkko, J. Kempf, B. Zill, P. Nikander, SEcure Neighbor Dis-

covery (SEND), RFC 3971, Internet Engineering Task Force
(Mar. 2005).
URL http://www.rfc-editor.org/rfc/rfc3971.txt

[15] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,
E. Lear, Address Allocation for Private Internets, RFC 1918,
Internet Engineering Task Force (Feb. 1996).
URL http://www.rfc-editor.org/rfc/rfc1918.txt

[16] P. Leach, M. Mealling, R. Salz, A Universally Unique IDenti-
fier (UUID) URN Namespace, RFC 4122, Internet Engineering
Task Force (Jul. 2005).
URL http://www.rfc-editor.org/rfc/rfc4122.txt

[17] C. CullenJennings, B. Lowekamp, E. Rescorla, S. Baset,
H. HenningSchulzrinne, REsource LOcation And Discovery
(RELOAD) Base Protocol, Internet-Draft draft-ietf-p2psip-
base-23, Internet Engineering Task Force, work in progress
(Nov. 2012).
URL http://www.ietf.org/internet-drafts/draft-ietf-p2psip-base-23.txt

[18] R. Housley, W. Polk, W. Ford, D. Solo, Internet X.509 Pub-
lic Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, RFC 3280, Internet Engineering Task Force (Apr.
2002).
URL http://www.rfc-editor.org/rfc/rfc3280.txt

[19] P. Levis, N. Patel, D. Culler, S. Shenker, Trickle: A self regulat-
ing algorithm for code propagation and maintenance in wireless
sensor networks, Computer Science Division, University of Cal-
ifornia, 2003.

[20] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, R. Alexander, RPL: IPv6 Rout-
ing Protocol for Low-Power and Lossy Networks, RFC 6550,
Internet Engineering Task Force (Mar. 2012).
URL http://www.rfc-editor.org/rfc/rfc6550.txt

[21] Application-layer traffic optimization (alto) [online] (January
2013).

%

14

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339112&guid=3ef3ebdd-5bc0-4cb6-a4a2-a1cae09a9d68&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339113&guid=5bf4786f-da15-487d-80c4-7f1bd1498586&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339115&guid=b0ae410f-28bb-4ce8-90bc-b70874f05209&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339116&guid=ba1a91b2-ae37-47b5-8ab4-4b0d65cf7548&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339120&guid=1a583b56-ba22-4417-9233-6d40dfe0c20b&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339121&guid=fcc011c2-82b6-48ef-9ef5-8d72ddbe8ddd&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339130&guid=20d52a27-70fb-4e87-bf64-4dff31c54004&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339131&guid=737f3902-8733-4f40-bb1b-11720108ee63&scheme=1

Figure
Click here to download high resolution image

http://ees.elsevier.com/comcom/download.aspx?id=339134&guid=e772b926-db88-428d-9af9-4a9ff3facec6&scheme=1

